{ "id": "1610.03970", "version": "v1", "published": "2016-10-13T08:17:38.000Z", "updated": "2016-10-13T08:17:38.000Z", "title": "The bv algebra in string topology of classifying spaces", "authors": [ "Katsuhiko Kuribayashi", "Luc Menichi" ], "categories": [ "math.AT", "math.GT", "math.QA" ], "abstract": "For almost any compact connected Lie group $G$ and any field $\\mathbb{F}\\_p$, we compute the Batalin-Vilkoviskyalgebra $H^{*+\\text{dim }G}(LBG;\\mathbb{F}\\_p)$ on the loop cohomology of the classifying space introduced byChataur and the second author.In particular, if $p$ is odd or $p=0$, this Batalin-Vilkovisky algebra is isomorphicto the Hochschild cohomology $HH^*(H\\_*(G),H\\_*(G))$. Over $\\mathbb{F}\\_2$, such isomorphism of Batalin-Vilkovisky algebrasdoes not hold when $G=SO(3)$ or $G=G\\_2$.", "revisions": [ { "version": "v1", "updated": "2016-10-13T08:17:38.000Z" } ], "analyses": { "keywords": [ "classifying space", "bv algebra", "string topology", "compact connected lie group", "hochschild cohomology" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }