arXiv Analytics

Sign in

arXiv:1610.00444 [math.CA]AbstractReferencesReviewsResources

Sharp weighted estimates for multi-frequency Calderón-Zygmund operators

Saurabh Shrivastava, Senthil Raani K. S

Published 2016-10-03Version 1

In this paper we study weighted estimates for the multi-frequency $\omega-$Calder\'on-Zygmund operators $T$ associated with the frequency set $\Theta=\{\xi_1,\xi_2,\dots,\xi_N\}$ and modulus of continuity $\omega$ satisfying the usual Dini condition. We use the modern method of domination by sparse operators and obtain sharp bounds $\|T\|_{L^p(w)\rightarrow L^p(w)}\lesssim N^{\frac{1}{2}}[w]_{\mathbb{A}_p}^{max(1,\frac{1}{p-1})}$ for the exponents of $N$ and $\mathbb{A}_p$ characteristic $[w]_{\mathbb{A}_p}$.

Related articles: Most relevant | Search more
arXiv:1001.4254 [math.CA] (Published 2010-01-25, updated 2011-03-13)
Sharp weighted estimates for classical operators
arXiv:1010.0755 [math.CA] (Published 2010-10-05, updated 2010-12-08)
Sharp weighted estimates for dyadic shifts and the $A_2$ conjecture
arXiv:1001.4724 [math.CA] (Published 2010-01-26, updated 2010-03-05)
Sharp weighted estimates for approximating dyadic operators