{ "id": "1610.00444", "version": "v1", "published": "2016-10-03T08:48:39.000Z", "updated": "2016-10-03T08:48:39.000Z", "title": "Sharp weighted estimates for multi-frequency Calderón-Zygmund operators", "authors": [ "Saurabh Shrivastava", "Senthil Raani K. S" ], "categories": [ "math.CA" ], "abstract": "In this paper we study weighted estimates for the multi-frequency $\\omega-$Calder\\'on-Zygmund operators $T$ associated with the frequency set $\\Theta=\\{\\xi_1,\\xi_2,\\dots,\\xi_N\\}$ and modulus of continuity $\\omega$ satisfying the usual Dini condition. We use the modern method of domination by sparse operators and obtain sharp bounds $\\|T\\|_{L^p(w)\\rightarrow L^p(w)}\\lesssim N^{\\frac{1}{2}}[w]_{\\mathbb{A}_p}^{max(1,\\frac{1}{p-1})}$ for the exponents of $N$ and $\\mathbb{A}_p$ characteristic $[w]_{\\mathbb{A}_p}$.", "revisions": [ { "version": "v1", "updated": "2016-10-03T08:48:39.000Z" } ], "analyses": { "subjects": [ "42B20", "42B25" ], "keywords": [ "multi-frequency calderón-zygmund operators", "sharp weighted estimates", "usual dini condition", "frequency set", "sharp bounds" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }