arXiv Analytics

Sign in

arXiv:1610.00423 [math.FA]AbstractReferencesReviewsResources

Decomposition of functions between Banach spaces in the orthogonality equation

Maysam Maysami Sadr

Published 2016-10-03Version 1

Let $E,F$ be Banach spaces. In the case that $F$ is reflexive we give a description for the solutions $(f,g)$ of the Banach-orthogonality equation $$\langle f(x),g(\alpha)\rangle=\langle x,\alpha\rangle\hspace{10mm}\forall x\in E,\forall \alpha\in E^*,$$ where $f:E\rightarrow F,g:E^*\rightarrow F^*$ are two maps. Our result generalizes the recent result of {\L}ukasik and W\'{o}jcik in the case that $E$ and $F$ are Hilbert spaces.

Comments: Keywords: orthogonality equation; Banach space; bounded linear operator
Categories: math.FA
Subjects: 39B52, 47A05, 47A62
Related articles: Most relevant | Search more
arXiv:math/0408004 [math.FA] (Published 2004-07-31, updated 2005-02-22)
Skipped Blocking and other Decompositions in Banach spaces
arXiv:1112.5888 [math.FA] (Published 2011-12-26)
On smooth extensions of vector-valued functions defined on closed subsets of Banach spaces
arXiv:math/0201098 [math.FA] (Published 2002-01-11)
A survey of nearisometries