{ "id": "1610.00423", "version": "v1", "published": "2016-10-03T06:45:10.000Z", "updated": "2016-10-03T06:45:10.000Z", "title": "Decomposition of functions between Banach spaces in the orthogonality equation", "authors": [ "Maysam Maysami Sadr" ], "comment": "Keywords: orthogonality equation; Banach space; bounded linear operator", "categories": [ "math.FA" ], "abstract": "Let $E,F$ be Banach spaces. In the case that $F$ is reflexive we give a description for the solutions $(f,g)$ of the Banach-orthogonality equation $$\\langle f(x),g(\\alpha)\\rangle=\\langle x,\\alpha\\rangle\\hspace{10mm}\\forall x\\in E,\\forall \\alpha\\in E^*,$$ where $f:E\\rightarrow F,g:E^*\\rightarrow F^*$ are two maps. Our result generalizes the recent result of {\\L}ukasik and W\\'{o}jcik in the case that $E$ and $F$ are Hilbert spaces.", "revisions": [ { "version": "v1", "updated": "2016-10-03T06:45:10.000Z" } ], "analyses": { "subjects": [ "39B52", "47A05", "47A62" ], "keywords": [ "banach spaces", "decomposition", "hilbert spaces", "result generalizes" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }