arXiv Analytics

Sign in

arXiv:1609.08724 [math.NT]AbstractReferencesReviewsResources

Hausdorff dimension of the set in irrational rotations

Dong Han Kim, Michał Rams, Baowei Wang

Published 2016-09-28Version 1

Let $\theta$ be an irrational number and $\varphi: {\mathbb N} \to {\mathbb R}^{+}$ be a monotone decreasing function tending to zero. Let $$E_\varphi(\theta) =\Big\{y \in \mathbb R: \|n\theta- y\|<\varphi(n), \ {\text{for infinitely many}}\ n\in {\mathbb N} \Big\}, $$ i.e. the set of points which are approximated by the irrational rotation with respect to the error function $\varphi(n)$. In this article, we give a complete description of the Hausdorff dimension of $E_\varphi(\theta)$ for any monotone function $\varphi$ and any irrational $\theta$.

Related articles: Most relevant | Search more
arXiv:1804.06608 [math.NT] (Published 2018-04-18)
Hausdorff dimensions of sets related to Erdös-Rényi average in beta expansions
arXiv:2102.04038 [math.NT] (Published 2021-02-08)
Prime-representing functions and Hausdorff dimension
arXiv:2008.11150 [math.NT] (Published 2020-08-25)
Hidden Positivity and a New Approach to Numerical Computation of Hausdorff Dimension: Higher Order Methods