{ "id": "1609.08724", "version": "v1", "published": "2016-09-28T01:49:54.000Z", "updated": "2016-09-28T01:49:54.000Z", "title": "Hausdorff dimension of the set in irrational rotations", "authors": [ "Dong Han Kim", "MichaƂ Rams", "Baowei Wang" ], "comment": "15pages", "categories": [ "math.NT", "math.DS" ], "abstract": "Let $\\theta$ be an irrational number and $\\varphi: {\\mathbb N} \\to {\\mathbb R}^{+}$ be a monotone decreasing function tending to zero. Let $$E_\\varphi(\\theta) =\\Big\\{y \\in \\mathbb R: \\|n\\theta- y\\|<\\varphi(n), \\ {\\text{for infinitely many}}\\ n\\in {\\mathbb N} \\Big\\}, $$ i.e. the set of points which are approximated by the irrational rotation with respect to the error function $\\varphi(n)$. In this article, we give a complete description of the Hausdorff dimension of $E_\\varphi(\\theta)$ for any monotone function $\\varphi$ and any irrational $\\theta$.", "revisions": [ { "version": "v1", "updated": "2016-09-28T01:49:54.000Z" } ], "analyses": { "subjects": [ "11K55", "11J71", "28A80" ], "keywords": [ "hausdorff dimension", "irrational rotation", "error function", "monotone function", "irrational number" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }