arXiv Analytics

Sign in

arXiv:1609.05428 [math.AP]AbstractReferencesReviewsResources

Bounds for the extremal parameter of nonlinear eigenvalue problems and application to the explosion problem in a flow

Asadollah Aghajani, Alireza M. Tehrani

Published 2016-09-18Version 1

We consider the nonlinear eigenvalue problem $ L u = \lambda f(u) $, posed in a smooth bounded domain $ \Omega \subseteq \Bbb{R}^{N} $ with Dirichlet boundary condition, where $ L $ is a uniformly elliptic second-order linear differential operator, $ \lambda > 0 $ and $ f:[0,a_{f}) \rightarrow \Bbb{R}_{+} $ $ (0 < a_{f} \leqslant \infty)$ is a smooth, increasing and convex nonlinearity such that $ f(0) > 0 $ and which blows up at $ a_{f} $. First we present some upper and lower bounds for the extremal parameter $ \lambda^{*} $ and the extremal solution $ u^{*} $. Then we apply the results to the operator $ L_A = - \Delta + A c(x) $ with $ A>0 $ and $ c(x) $ is a divergence-free flow in $ \Omega $. We show that, if $\psi_{A,\Omega}$ is the maximum of the solution $\psi_{A}(x)$ of the equation $ L_A u = 1 $ in $\Omega$ with Dirichlet boundary condition, then for any incompressible flow $ c(x) $ we have, $\psi_{A,\Omega} \longrightarrow 0$ as $A \longrightarrow \infty$ if and only if $c(x)$ has no non-zero first integrals in $H_{0}^{1}(\Omega)$. Also, taking $ c(x)=-x\rho(|x|) $ where $\rho$ is a smooth real function on $[0,1]$ then $c(x)$ is never divergence-free in unit ball $ B\subset \Bbb{R}^{N} $, but our results completely determine the behaviour of the extremal parameter $ \lambda^{*}_{A} $ as $ A \longrightarrow \infty $.

Related articles: Most relevant | Search more
arXiv:0706.0615 [math.AP] (Published 2007-06-05, updated 2007-09-07)
Asymptotic behavior of a fourth order mean field equation with Dirichlet boundary condition
arXiv:1303.4358 [math.AP] (Published 2013-03-18)
Generic properties of the spectrum of the Stokes system with Dirichlet boundary condition in R^3
arXiv:1310.5636 [math.AP] (Published 2013-10-21)
On the Structure of the Solution Set of a Sign Changing Perturbation of the p-Laplacian under Dirichlet Boundary Condition