{ "id": "1609.05428", "version": "v1", "published": "2016-09-18T06:17:43.000Z", "updated": "2016-09-18T06:17:43.000Z", "title": "Bounds for the extremal parameter of nonlinear eigenvalue problems and application to the explosion problem in a flow", "authors": [ "Asadollah Aghajani", "Alireza M. Tehrani" ], "categories": [ "math.AP" ], "abstract": "We consider the nonlinear eigenvalue problem $ L u = \\lambda f(u) $, posed in a smooth bounded domain $ \\Omega \\subseteq \\Bbb{R}^{N} $ with Dirichlet boundary condition, where $ L $ is a uniformly elliptic second-order linear differential operator, $ \\lambda > 0 $ and $ f:[0,a_{f}) \\rightarrow \\Bbb{R}_{+} $ $ (0 < a_{f} \\leqslant \\infty)$ is a smooth, increasing and convex nonlinearity such that $ f(0) > 0 $ and which blows up at $ a_{f} $. First we present some upper and lower bounds for the extremal parameter $ \\lambda^{*} $ and the extremal solution $ u^{*} $. Then we apply the results to the operator $ L_A = - \\Delta + A c(x) $ with $ A>0 $ and $ c(x) $ is a divergence-free flow in $ \\Omega $. We show that, if $\\psi_{A,\\Omega}$ is the maximum of the solution $\\psi_{A}(x)$ of the equation $ L_A u = 1 $ in $\\Omega$ with Dirichlet boundary condition, then for any incompressible flow $ c(x) $ we have, $\\psi_{A,\\Omega} \\longrightarrow 0$ as $A \\longrightarrow \\infty$ if and only if $c(x)$ has no non-zero first integrals in $H_{0}^{1}(\\Omega)$. Also, taking $ c(x)=-x\\rho(|x|) $ where $\\rho$ is a smooth real function on $[0,1]$ then $c(x)$ is never divergence-free in unit ball $ B\\subset \\Bbb{R}^{N} $, but our results completely determine the behaviour of the extremal parameter $ \\lambda^{*}_{A} $ as $ A \\longrightarrow \\infty $.", "revisions": [ { "version": "v1", "updated": "2016-09-18T06:17:43.000Z" } ], "analyses": { "subjects": [ "35B40", "35P30", "35J91", "35B32" ], "keywords": [ "nonlinear eigenvalue problem", "extremal parameter", "explosion problem", "dirichlet boundary condition", "elliptic second-order linear differential operator" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }