arXiv Analytics

Sign in

arXiv:1608.06094 [math.FA]AbstractReferencesReviewsResources

The star-shapedness of a generalized numerical range

Pan-Shun Lau, Tuen-Wai Ng, Nam-Kiu Tsing

Published 2016-08-22Version 1

Let $\mathcal{H}_n$ be the set of all $n\times n$ Hermitian matrices and $\mathcal{H}^m_n$ be the set of all $m$-tuples of $n\times n$ Hermitian matrices. For $A=(A_1,...,A_m)\in \mathcal{H}^m_n$ and for any linear map $L:\mathcal{H}^m_n\to\mathbb{R}^\ell$, we define the $L$-numerical range of $A$ by \[ W_L(A):=\{L(U^*A_1U,...,U^*A_mU): U\in \mathbb{C}^{n\times n}, U^*U=I_n\}. \] In this paper, we prove that if $\ell\leq 3$, $n\geq \ell$ and $A_1,...,A_m$ are simultaneously unitarily diagonalizable, then $W_L(A)$ is star-shaped with star center at $L\left(\frac{\mathrm{tr} A_1}{n}I_n,...,\frac{\mathrm{tr} A_m}{n}I_n\right)$.

Related articles: Most relevant | Search more
arXiv:1805.00602 [math.FA] (Published 2018-05-02)
The generalized numerical range of a set of matrices
arXiv:2212.00319 [math.FA] (Published 2022-12-01)
An interlacing result for Hermitian matrices in Minkowski space
arXiv:1608.06101 [math.FA] (Published 2016-08-22)
Convexity and Star-shapedness of Real Linear Images of Special Orthogonal Orbits