{ "id": "1608.06094", "version": "v1", "published": "2016-08-22T09:21:04.000Z", "updated": "2016-08-22T09:21:04.000Z", "title": "The star-shapedness of a generalized numerical range", "authors": [ "Pan-Shun Lau", "Tuen-Wai Ng", "Nam-Kiu Tsing" ], "categories": [ "math.FA" ], "abstract": "Let $\\mathcal{H}_n$ be the set of all $n\\times n$ Hermitian matrices and $\\mathcal{H}^m_n$ be the set of all $m$-tuples of $n\\times n$ Hermitian matrices. For $A=(A_1,...,A_m)\\in \\mathcal{H}^m_n$ and for any linear map $L:\\mathcal{H}^m_n\\to\\mathbb{R}^\\ell$, we define the $L$-numerical range of $A$ by \\[ W_L(A):=\\{L(U^*A_1U,...,U^*A_mU): U\\in \\mathbb{C}^{n\\times n}, U^*U=I_n\\}. \\] In this paper, we prove that if $\\ell\\leq 3$, $n\\geq \\ell$ and $A_1,...,A_m$ are simultaneously unitarily diagonalizable, then $W_L(A)$ is star-shaped with star center at $L\\left(\\frac{\\mathrm{tr} A_1}{n}I_n,...,\\frac{\\mathrm{tr} A_m}{n}I_n\\right)$.", "revisions": [ { "version": "v1", "updated": "2016-08-22T09:21:04.000Z" } ], "analyses": { "subjects": [ "15A04", "15A60" ], "keywords": [ "generalized numerical range", "star-shapedness", "hermitian matrices", "star center" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }