arXiv Analytics

Sign in

arXiv:1607.08306 [math.DG]AbstractReferencesReviewsResources

Partial result of Yau's Conjecture of the first eigenvalue in unit sphere $\mathbb{S}^{n+1}(1)$

Zhongyang Sun

Published 2016-07-28Version 1

In this paper, we partially solve Yau' Conjecture of the first eigenvalue of an embedded compact minimal hypersurface of unit sphere $\mathbb{S}^{n+1}(1)$, i.e., Corollary 1.2. In particular, Corollary 1.3 proves that the condition $\int_{\Omega_{1}}|\nabla u|^{2}=(n+1)\int_{\Omega_{1}}u^{2}$ is naturally true and meaningful in Corollary 1.2.

Related articles: Most relevant | Search more
arXiv:math/0410493 [math.DG] (Published 2004-10-22)
Estimates of the first eigenvalue of minimal hypersurfaces of $\mathbb{S}^{n+1}
arXiv:1612.01255 [math.DG] (Published 2016-12-05)
The First Eigenvalue for the Bi-Beltrami-Laplacian on Minimal Isoparametric Hypersurfaces of $\mathbb{S}^{n+1}(1)$
arXiv:1903.09092 [math.DG] (Published 2019-03-18)
Variation of the first eigenvalue of $(p,q)$-Laplacian along the Ricci-harmonic flow