{ "id": "1607.08306", "version": "v1", "published": "2016-07-28T03:39:27.000Z", "updated": "2016-07-28T03:39:27.000Z", "title": "Partial result of Yau's Conjecture of the first eigenvalue in unit sphere $\\mathbb{S}^{n+1}(1)$", "authors": [ "Zhongyang Sun" ], "categories": [ "math.DG" ], "abstract": "In this paper, we partially solve Yau' Conjecture of the first eigenvalue of an embedded compact minimal hypersurface of unit sphere $\\mathbb{S}^{n+1}(1)$, i.e., Corollary 1.2. In particular, Corollary 1.3 proves that the condition $\\int_{\\Omega_{1}}|\\nabla u|^{2}=(n+1)\\int_{\\Omega_{1}}u^{2}$ is naturally true and meaningful in Corollary 1.2.", "revisions": [ { "version": "v1", "updated": "2016-07-28T03:39:27.000Z" } ], "analyses": { "keywords": [ "first eigenvalue", "unit sphere", "yaus conjecture", "partial result", "embedded compact minimal hypersurface" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }