arXiv:1607.05815 [math.FA]AbstractReferencesReviewsResources
Factorizations of Contractions
B. Krishna Das, Jaydeb Sarkar, Srijan Sarkar
Published 2016-07-20Version 1
The celebrated theorem of Berger, Coburn and Lebow on pairs of commuting isometries can be formulated as follows: a pure isometry $V$ on a Hilbert space $\mathcal{H}$ is a product of two commuting isometries $V_1$ and $V_2$ in $\mathcal{B}(\mathcal{H})$ if and only if there exists a Hilbert space $\mathcal{E}$, a unitary $U$ in $\mathcal{B}(\mathcal{E})$ and an orthogonal projection $P$ in $\mathcal{B}(\mathcal{E})$ such that $(V, V_1, V_2)$ and $(M_z, M_{\Phi}, M_{\Psi})$ on $H^2_{\mathcal{E}}(\mathbb{D})$ are unitarily equivalent, where \[ \Phi(z)=(P+zP^{\perp})U^*\;\text{and}\; \Psi(z)=U(P^{\perp}+zP) \;;(z \in \mathbb{D}). \] Here we prove a similar factorization result for pure contractions. More particularly, let $T$ be a pure contraction on a Hilbert space $\mathcal{H}$ and let $P_{\mathcal{Q}} M_z|_{\mathcal{Q}}$ be the Sz.-Nagy and Foias representation of $T$ for some canonical $\mathcal{Q} \subseteq H^2_{\mathcal{D}}(\mathbb{D})$. Then $T = T_1 T_2$, for some commuting contractions $T_1$ and $T_2$ on $\mathcal{H}$, if and only if there exists $\mathcal{B}(\mathcal{D})$-valued polynomials $\varphi$ and $\psi$ of degree $ \leq 1$ such that $\mathcal{Q}$ is a joint $(M_{\varphi}^*, M_{\psi}^*)$-invariant subspace, \[P_{\mathcal{Q}} M_z|_{\mathcal{Q}} = P_{\mathcal{Q}} M_{\varphi \psi}|_{\mathcal{Q}} = P_{\mathcal{Q}} M_{\psi \varphi}|_{\mathcal{Q}} \; \mbox{and} \;(T_1, T_2) \cong (P_{\mathcal{Q}} M_{\varphi}|_{\mathcal{Q}}, P_{\mathcal{Q}} M_{\psi}|_{\mathcal{Q}}).\]