{ "id": "1607.05815", "version": "v1", "published": "2016-07-20T04:13:57.000Z", "updated": "2016-07-20T04:13:57.000Z", "title": "Factorizations of Contractions", "authors": [ "B. Krishna Das", "Jaydeb Sarkar", "Srijan Sarkar" ], "comment": "11 pages", "categories": [ "math.FA", "math.CV", "math.OA" ], "abstract": "The celebrated theorem of Berger, Coburn and Lebow on pairs of commuting isometries can be formulated as follows: a pure isometry $V$ on a Hilbert space $\\mathcal{H}$ is a product of two commuting isometries $V_1$ and $V_2$ in $\\mathcal{B}(\\mathcal{H})$ if and only if there exists a Hilbert space $\\mathcal{E}$, a unitary $U$ in $\\mathcal{B}(\\mathcal{E})$ and an orthogonal projection $P$ in $\\mathcal{B}(\\mathcal{E})$ such that $(V, V_1, V_2)$ and $(M_z, M_{\\Phi}, M_{\\Psi})$ on $H^2_{\\mathcal{E}}(\\mathbb{D})$ are unitarily equivalent, where \\[ \\Phi(z)=(P+zP^{\\perp})U^*\\;\\text{and}\\; \\Psi(z)=U(P^{\\perp}+zP) \\;;(z \\in \\mathbb{D}). \\] Here we prove a similar factorization result for pure contractions. More particularly, let $T$ be a pure contraction on a Hilbert space $\\mathcal{H}$ and let $P_{\\mathcal{Q}} M_z|_{\\mathcal{Q}}$ be the Sz.-Nagy and Foias representation of $T$ for some canonical $\\mathcal{Q} \\subseteq H^2_{\\mathcal{D}}(\\mathbb{D})$. Then $T = T_1 T_2$, for some commuting contractions $T_1$ and $T_2$ on $\\mathcal{H}$, if and only if there exists $\\mathcal{B}(\\mathcal{D})$-valued polynomials $\\varphi$ and $\\psi$ of degree $ \\leq 1$ such that $\\mathcal{Q}$ is a joint $(M_{\\varphi}^*, M_{\\psi}^*)$-invariant subspace, \\[P_{\\mathcal{Q}} M_z|_{\\mathcal{Q}} = P_{\\mathcal{Q}} M_{\\varphi \\psi}|_{\\mathcal{Q}} = P_{\\mathcal{Q}} M_{\\psi \\varphi}|_{\\mathcal{Q}} \\; \\mbox{and} \\;(T_1, T_2) \\cong (P_{\\mathcal{Q}} M_{\\varphi}|_{\\mathcal{Q}}, P_{\\mathcal{Q}} M_{\\psi}|_{\\mathcal{Q}}).\\]", "revisions": [ { "version": "v1", "updated": "2016-07-20T04:13:57.000Z" } ], "analyses": { "subjects": [ "47A13", "47A20", "47A56", "47A68", "47B38", "46E20", "30H10" ], "keywords": [ "hilbert space", "pure contraction", "commuting isometries", "similar factorization result", "orthogonal projection" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }