arXiv:1607.04764 [math.NT]AbstractReferencesReviewsResources
On the representations of a positive integer by certain classes of quadratic forms in eight variables
B. Ramakrishnan, Brundaban Sahu, Anup Kumar Singh
Published 2016-07-16Version 1
In this paper we use the theory of modular forms to find formulas for the number of representations of a positive integer by certain class of quadratic forms in eight variables, viz., forms of the form $a_1x_1^2 + a_2 x_2^2 + a_3 x_3^2 + a_4 x_4^2 + b_1(x_5^2+x_5x_6 + x_6^2) + b_2(x_7^2+x_7x_8 + x_8^2)$, where $a_1\le a_2\le a_3\le a_4$, $b_1\le b_2$ and $a_i$'s $\in \{1,2,3\}$, $b_i$'s $\in \{1,2,4\}$. We also determine formulas for the number of representations of a positive integer by the quadratic forms $(x_1^2+x_1x_2+x_2^2) + c_1(x_3^2+x_3x_4+x_4^2) + c_2(x_5^2+x_5x_6+x_6^2) + c_3(x_7^2+x_7x_8+x_8^2)$, where $c_1,c_2,c_3\in \{1,2,4,8\}$, $c_1\le c_2\le c_3$.