arXiv Analytics

Sign in

arXiv:1607.04764 [math.NT]AbstractReferencesReviewsResources

On the representations of a positive integer by certain classes of quadratic forms in eight variables

B. Ramakrishnan, Brundaban Sahu, Anup Kumar Singh

Published 2016-07-16Version 1

In this paper we use the theory of modular forms to find formulas for the number of representations of a positive integer by certain class of quadratic forms in eight variables, viz., forms of the form $a_1x_1^2 + a_2 x_2^2 + a_3 x_3^2 + a_4 x_4^2 + b_1(x_5^2+x_5x_6 + x_6^2) + b_2(x_7^2+x_7x_8 + x_8^2)$, where $a_1\le a_2\le a_3\le a_4$, $b_1\le b_2$ and $a_i$'s $\in \{1,2,3\}$, $b_i$'s $\in \{1,2,4\}$. We also determine formulas for the number of representations of a positive integer by the quadratic forms $(x_1^2+x_1x_2+x_2^2) + c_1(x_3^2+x_3x_4+x_4^2) + c_2(x_5^2+x_5x_6+x_6^2) + c_3(x_7^2+x_7x_8+x_8^2)$, where $c_1,c_2,c_3\in \{1,2,4,8\}$, $c_1\le c_2\le c_3$.

Comments: 18 pages, 7 tables. arXiv admin note: substantial text overlap with arXiv:1607.03809
Categories: math.NT
Subjects: 11F25, 11A25, 11F11
Related articles: Most relevant | Search more
arXiv:1210.3708 [math.NT] (Published 2012-10-13, updated 2014-03-10)
On representations of positive integers by $(a+c)^{1/3}x + (b+d)y$, $(a+c)x + \bigl(k(b+d) \bigr)^{1/3} y$, and $\bigl(k(a+c) \bigr)^{1/3} x + l(b+d) y$
arXiv:1412.3089 [math.NT] (Published 2014-12-09)
On Schemmel Nontotient Numbers
arXiv:1412.3080 [math.NT] (Published 2014-12-09)
On Sparsely Schemmel Totient Numbers