arXiv:1412.3080 [math.NT]AbstractReferencesReviewsResources
On Sparsely Schemmel Totient Numbers
Published 2014-12-09Version 1
For each positive integer $r$, let $S_r$ denote the $r^{th}$ Schemmel totient function, a multiplicative arithmetic function defined by \[S_r(p^{\alpha})=\begin{cases} 0, & \mbox{if } p\leq r; \\ p^{\alpha-1}(p-r), & \mbox{if } p>r \end{cases}\] for all primes $p$ and positive integers $\alpha$. The function $S_1$ is simply Euler's totient function $\phi$. Masser and Shiu have established several fascinating results concerning sparsely totient numbers, positive integers $n$ satisfying $\phi(n)<\phi(m)$ for all integers $m>n$. We define a sparsely Schemmel totient number of order $r$ to be a positive integer $n$ such that $S_r(n)>0$ and $S_r(n)<S_r(m)$ for all $m>n$ with $S_r(m)>0$. We then generalize some of the results of Masser and Shiu.