arXiv Analytics

Sign in

arXiv:1412.3080 [math.NT]AbstractReferencesReviewsResources

On Sparsely Schemmel Totient Numbers

Colin Defant

Published 2014-12-09Version 1

For each positive integer $r$, let $S_r$ denote the $r^{th}$ Schemmel totient function, a multiplicative arithmetic function defined by \[S_r(p^{\alpha})=\begin{cases} 0, & \mbox{if } p\leq r; \\ p^{\alpha-1}(p-r), & \mbox{if } p>r \end{cases}\] for all primes $p$ and positive integers $\alpha$. The function $S_1$ is simply Euler's totient function $\phi$. Masser and Shiu have established several fascinating results concerning sparsely totient numbers, positive integers $n$ satisfying $\phi(n)<\phi(m)$ for all integers $m>n$. We define a sparsely Schemmel totient number of order $r$ to be a positive integer $n$ such that $S_r(n)>0$ and $S_r(n)<S_r(m)$ for all $m>n$ with $S_r(m)>0$. We then generalize some of the results of Masser and Shiu.

Comments: 14 pages, 0 figures, Supported by National Science Foundation grant no. 1262930
Categories: math.NT
Subjects: 11A25
Related articles: Most relevant | Search more
arXiv:1711.00180 [math.NT] (Published 2017-11-01)
Diophantine equations involving Euler's totient function
arXiv:1210.3708 [math.NT] (Published 2012-10-13, updated 2014-03-10)
On representations of positive integers by $(a+c)^{1/3}x + (b+d)y$, $(a+c)x + \bigl(k(b+d) \bigr)^{1/3} y$, and $\bigl(k(a+c) \bigr)^{1/3} x + l(b+d) y$
arXiv:2007.05771 [math.NT] (Published 2020-07-11)
Gaps between totients