{ "id": "1412.3080", "version": "v1", "published": "2014-12-09T20:06:18.000Z", "updated": "2014-12-09T20:06:18.000Z", "title": "On Sparsely Schemmel Totient Numbers", "authors": [ "Colin Defant" ], "comment": "14 pages, 0 figures, Supported by National Science Foundation grant no. 1262930", "categories": [ "math.NT" ], "abstract": "For each positive integer $r$, let $S_r$ denote the $r^{th}$ Schemmel totient function, a multiplicative arithmetic function defined by \\[S_r(p^{\\alpha})=\\begin{cases} 0, & \\mbox{if } p\\leq r; \\\\ p^{\\alpha-1}(p-r), & \\mbox{if } p>r \\end{cases}\\] for all primes $p$ and positive integers $\\alpha$. The function $S_1$ is simply Euler's totient function $\\phi$. Masser and Shiu have established several fascinating results concerning sparsely totient numbers, positive integers $n$ satisfying $\\phi(n)<\\phi(m)$ for all integers $m>n$. We define a sparsely Schemmel totient number of order $r$ to be a positive integer $n$ such that $S_r(n)>0$ and $S_r(n)n$ with $S_r(m)>0$. We then generalize some of the results of Masser and Shiu.", "revisions": [ { "version": "v1", "updated": "2014-12-09T20:06:18.000Z" } ], "analyses": { "subjects": [ "11A25" ], "keywords": [ "sparsely schemmel totient number", "positive integer", "eulers totient function", "results concerning sparsely totient numbers", "schemmel totient function" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1412.3080D" } } }