arXiv Analytics

Sign in

arXiv:1607.04510 [math.AP]AbstractReferencesReviewsResources

Existence of positive solution for a system of elliptic equations via bifurcation theory

Romildo N. de Lima, Marco A. S. Souto

Published 2016-07-15Version 1

In this paper we study the existence of solution for the following class of system of elliptic equations $$ \left\{ \begin{array}{lcl} -\Delta u=\left(a-\int_{\Omega}K(x,y)f(u,v)dy\right)u+bv,\quad \mbox{in} \quad \Omega -\Delta v=\left(d-\int_{\Omega}\Gamma(x,y)g(u,v)dy\right)v+cu,\quad \mbox{in} \quad \Omega u=v=0,\quad \mbox{on} \quad \partial\Omega \end{array} \right. \eqno{(P)} $$ where $\Omega\subset\R^N$ is a smooth bounded domain, $N\geq1$, and $K,\Gamma:\Omega\times\Omega\rightarrow\R$ is a nonnegative function checking some hypotheses and $a,b,c,d\in\R$. The functions $f$ and $g$ satisfy some conditions which permit to use Bifurcation Theory to prove the existence of solution for $(P)$.

Comments: 21 pages. arXiv admin note: text overlap with arXiv:1509.05294
Categories: math.AP
Related articles: Most relevant | Search more
arXiv:1908.01390 [math.AP] (Published 2019-08-04)
$L^{\infty}$-estimates for elliptic equations involving critical exponents and convolution
arXiv:1511.04644 [math.AP] (Published 2015-11-15)
The peak of the solution of elliptic equations
arXiv:2105.12193 [math.AP] (Published 2021-05-25)
Bifurcation Theory for Fredholm Operators