{ "id": "1607.04510", "version": "v1", "published": "2016-07-15T13:56:51.000Z", "updated": "2016-07-15T13:56:51.000Z", "title": "Existence of positive solution for a system of elliptic equations via bifurcation theory", "authors": [ "Romildo N. de Lima", "Marco A. S. Souto" ], "comment": "21 pages. arXiv admin note: text overlap with arXiv:1509.05294", "categories": [ "math.AP" ], "abstract": "In this paper we study the existence of solution for the following class of system of elliptic equations $$ \\left\\{ \\begin{array}{lcl} -\\Delta u=\\left(a-\\int_{\\Omega}K(x,y)f(u,v)dy\\right)u+bv,\\quad \\mbox{in} \\quad \\Omega -\\Delta v=\\left(d-\\int_{\\Omega}\\Gamma(x,y)g(u,v)dy\\right)v+cu,\\quad \\mbox{in} \\quad \\Omega u=v=0,\\quad \\mbox{on} \\quad \\partial\\Omega \\end{array} \\right. \\eqno{(P)} $$ where $\\Omega\\subset\\R^N$ is a smooth bounded domain, $N\\geq1$, and $K,\\Gamma:\\Omega\\times\\Omega\\rightarrow\\R$ is a nonnegative function checking some hypotheses and $a,b,c,d\\in\\R$. The functions $f$ and $g$ satisfy some conditions which permit to use Bifurcation Theory to prove the existence of solution for $(P)$.", "revisions": [ { "version": "v1", "updated": "2016-07-15T13:56:51.000Z" } ], "analyses": { "keywords": [ "elliptic equations", "bifurcation theory", "positive solution", "smooth bounded domain", "nonnegative function" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable" } } }