arXiv:1607.03022 [math.DS]AbstractReferencesReviewsResources
A topological conjugacy of invariant flows on some class of Lie groups
Alexandre J. Santana, Simão N. Stelmastchuk
Published 2016-07-11Version 1
The aim of this paper is to give a condition to topological conjugacy of invariant flows in an Lie group $G$ which its Lie algebra $\mathfrak{g}$ is associative algebra or semisimple. In fact, we show that if two dynamical system on $G$ are hyperbolic, then they are topological conjugate.
Comments: 10 pages
Categories: math.DS
Related articles: Most relevant | Search more
arXiv:1806.09897 [math.DS] (Published 2018-06-26)
Variational discretization of thermodynamical simple systems on Lie groups
arXiv:1804.06068 [math.DS] (Published 2018-04-17)
Positivity, monotonicity, and consensus on Lie groups
Continuous and discrete Clebsch variational principles