{ "id": "1607.03022", "version": "v1", "published": "2016-07-11T16:42:53.000Z", "updated": "2016-07-11T16:42:53.000Z", "title": "A topological conjugacy of invariant flows on some class of Lie groups", "authors": [ "Alexandre J. Santana", "Simão N. Stelmastchuk" ], "comment": "10 pages", "categories": [ "math.DS" ], "abstract": "The aim of this paper is to give a condition to topological conjugacy of invariant flows in an Lie group $G$ which its Lie algebra $\\mathfrak{g}$ is associative algebra or semisimple. In fact, we show that if two dynamical system on $G$ are hyperbolic, then they are topological conjugate.", "revisions": [ { "version": "v1", "updated": "2016-07-11T16:42:53.000Z" } ], "analyses": { "subjects": [ "22E20", "54H20", "37B99" ], "keywords": [ "lie group", "invariant flows", "topological conjugacy", "lie algebra", "semisimple" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }