arXiv Analytics

Sign in

arXiv:1606.03468 [math.CO]AbstractReferencesReviewsResources

An improved bound on $(A+A)/(A+A)$

Ben Lund

Published 2016-06-10Version 1

We show that, for a finite set $A$ of real numbers, the size of the set $$\frac{A+A}{A+A} = \left\{ \frac{a+b}{c+d} : a,b,c,d \in A, c+d \neq 0 \right \}$$ is bounded from below by $$\left|\frac{A+A}{A+A} \right| \gg \frac{|A|^{2+1/4}}{|A / A|^{1/8} \log |A|}.$$ This improves a result of Roche-Newton.

Comments: 8 pages
Categories: math.CO
Related articles: Most relevant | Search more
arXiv:0811.1311 [math.CO] (Published 2008-11-09, updated 2009-10-29)
Squares in sumsets
arXiv:1610.02504 [math.CO] (Published 2016-10-08)
Minimizing the sum of projections of a finite set
arXiv:1606.04986 [math.CO] (Published 2016-06-15)
Power Series with Coefficients from a Finite Set