{ "id": "1606.03468", "version": "v1", "published": "2016-06-10T20:28:21.000Z", "updated": "2016-06-10T20:28:21.000Z", "title": "An improved bound on $(A+A)/(A+A)$", "authors": [ "Ben Lund" ], "comment": "8 pages", "categories": [ "math.CO" ], "abstract": "We show that, for a finite set $A$ of real numbers, the size of the set $$\\frac{A+A}{A+A} = \\left\\{ \\frac{a+b}{c+d} : a,b,c,d \\in A, c+d \\neq 0 \\right \\}$$ is bounded from below by $$\\left|\\frac{A+A}{A+A} \\right| \\gg \\frac{|A|^{2+1/4}}{|A / A|^{1/8} \\log |A|}.$$ This improves a result of Roche-Newton.", "revisions": [ { "version": "v1", "updated": "2016-06-10T20:28:21.000Z" } ], "analyses": { "keywords": [ "finite set", "real numbers" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }