arXiv Analytics

Sign in

arXiv:1605.01251 [math.AP]AbstractReferencesReviewsResources

Oscillation and variation for Riesz transform associated with Bessel operators

Huoxiong Wu, Dongyong Yang, Jing Zhang

Published 2016-05-04Version 1

Let $\lambda>0$ and $\triangle_\lambda:=-\frac{d^2}{dx^2}-\frac{2\lambda}{x} \frac d{dx}$ be the Bessel operator on $\mathbb R_+:=(0,\infty)$. We show that the oscillation operator $\mathcal{O}(R_{\Delta_{\lambda},\ast})$ and variation operator $\mathcal{V}_{\rho}(R_{\Delta_{\lambda},\ast})$ of the Riesz transform $R_{\Delta_{\lambda}}$ associated with $\Delta_\lambda$ are both bounded on $L^p(\mathbb R_+, dm_{\lambda})$ for $p\in(1,\,\infty)$, from $L^1(\mathbb{R}_{+},dm_{\lambda})$ to $L^{1,\,\infty}(\mathbb{R}_{+},dm_{\lambda})$, and from $L^{\infty}(\mathbb{R}_{+},dm_{\lambda})$ to $BMO(\mathbb{R}_{+},dm_{\lambda})$, where $\rho\in (2,\infty)$ and $dm_{\lambda}(x):=x^{2\lambda}dx$. As an application, we give the corresponding $L^p$-estimates for $\beta$-jump operators and the number of up-crossing.

Comments: 20 pages
Categories: math.AP
Subjects: 42B20, 42B35
Related articles: Most relevant | Search more
arXiv:1605.01256 [math.AP] (Published 2016-05-04)
Oscillation and variation for semigroups associated with Bessel operators
arXiv:0712.2085 [math.AP] (Published 2007-12-13)
Riesz transforms in one dimension
arXiv:1805.00132 [math.AP] (Published 2018-04-30)
Riesz transforms on a class of non-doubling manifolds