{ "id": "1605.01251", "version": "v1", "published": "2016-05-04T12:44:52.000Z", "updated": "2016-05-04T12:44:52.000Z", "title": "Oscillation and variation for Riesz transform associated with Bessel operators", "authors": [ "Huoxiong Wu", "Dongyong Yang", "Jing Zhang" ], "comment": "20 pages", "categories": [ "math.AP" ], "abstract": "Let $\\lambda>0$ and $\\triangle_\\lambda:=-\\frac{d^2}{dx^2}-\\frac{2\\lambda}{x} \\frac d{dx}$ be the Bessel operator on $\\mathbb R_+:=(0,\\infty)$. We show that the oscillation operator $\\mathcal{O}(R_{\\Delta_{\\lambda},\\ast})$ and variation operator $\\mathcal{V}_{\\rho}(R_{\\Delta_{\\lambda},\\ast})$ of the Riesz transform $R_{\\Delta_{\\lambda}}$ associated with $\\Delta_\\lambda$ are both bounded on $L^p(\\mathbb R_+, dm_{\\lambda})$ for $p\\in(1,\\,\\infty)$, from $L^1(\\mathbb{R}_{+},dm_{\\lambda})$ to $L^{1,\\,\\infty}(\\mathbb{R}_{+},dm_{\\lambda})$, and from $L^{\\infty}(\\mathbb{R}_{+},dm_{\\lambda})$ to $BMO(\\mathbb{R}_{+},dm_{\\lambda})$, where $\\rho\\in (2,\\infty)$ and $dm_{\\lambda}(x):=x^{2\\lambda}dx$. As an application, we give the corresponding $L^p$-estimates for $\\beta$-jump operators and the number of up-crossing.", "revisions": [ { "version": "v1", "updated": "2016-05-04T12:44:52.000Z" } ], "analyses": { "subjects": [ "42B20", "42B35" ], "keywords": [ "riesz transform", "bessel operator", "oscillation operator" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }