arXiv Analytics

Sign in

arXiv:1604.04858 [math.FA]AbstractReferencesReviewsResources

Factorizations of Characteristic Functions

Kalpesh J. Haria, Amit Maji, Jaydeb Sarkar

Published 2016-04-17Version 1

Let $A = (A_1, \ldots, A_n)$ and $B = (B_1, \ldots, B_n)$ be row contractions on $\mathcal{H}_1$ and $\mathcal{H}_2$, respectively, and $X$ be a row operator from $\oplus_{i=1}^n \mathcal{H}_2$ to $\mathcal{H}_1$. Let $D_{A^*} = (I - A A^*)^{\frac{1}{2}}$ and $D_{B} = (I - B^* B)^{\frac{1}{2}}$ and $\Theta_T$ be the characteristic function of $T = \begin{bmatrix} A& D_{A^*}L D_B\\ 0 & B \end{bmatrix}$. Then $\Theta_T$ coincides with the product of the characteristic function $\Theta_A$ of $A$, the Julia-Halmos matrix corresponding to $L$ and the characteristic function $\Theta_B$ of $B$. More precisely, $\Theta_T$ coincides with \[ \begin{bmatrix} \Theta_B & 0 \\ 0 & I \end{bmatrix} (I_\Gamma \otimes \begin{bmatrix} L^* & (I - L^* L)^{\frac{1}{2}} \\ (I - L L^*)^{\frac{1}{2}} & - L \end{bmatrix}) \begin{bmatrix} \Theta_A & 0\\ 0& I\end{bmatrix}, \] where $\Gamma$ is the full Fock space. Similar results hold for constrained row contractions.

Related articles: Most relevant | Search more
arXiv:2301.13811 [math.FA] (Published 2023-01-31)
Characteristic functions and Colligations
arXiv:2212.07808 [math.FA] (Published 2022-12-14)
Factorization of Characteristic Functions of Iterated Liftings
arXiv:math/0512551 [math.FA] (Published 2005-12-23)
Characteristic functions and joint invariant subspaces