{ "id": "1604.04858", "version": "v1", "published": "2016-04-17T10:25:56.000Z", "updated": "2016-04-17T10:25:56.000Z", "title": "Factorizations of Characteristic Functions", "authors": [ "Kalpesh J. Haria", "Amit Maji", "Jaydeb Sarkar" ], "comment": "13 pages", "categories": [ "math.FA", "math.CV", "math.OA" ], "abstract": "Let $A = (A_1, \\ldots, A_n)$ and $B = (B_1, \\ldots, B_n)$ be row contractions on $\\mathcal{H}_1$ and $\\mathcal{H}_2$, respectively, and $X$ be a row operator from $\\oplus_{i=1}^n \\mathcal{H}_2$ to $\\mathcal{H}_1$. Let $D_{A^*} = (I - A A^*)^{\\frac{1}{2}}$ and $D_{B} = (I - B^* B)^{\\frac{1}{2}}$ and $\\Theta_T$ be the characteristic function of $T = \\begin{bmatrix} A& D_{A^*}L D_B\\\\ 0 & B \\end{bmatrix}$. Then $\\Theta_T$ coincides with the product of the characteristic function $\\Theta_A$ of $A$, the Julia-Halmos matrix corresponding to $L$ and the characteristic function $\\Theta_B$ of $B$. More precisely, $\\Theta_T$ coincides with \\[ \\begin{bmatrix} \\Theta_B & 0 \\\\ 0 & I \\end{bmatrix} (I_\\Gamma \\otimes \\begin{bmatrix} L^* & (I - L^* L)^{\\frac{1}{2}} \\\\ (I - L L^*)^{\\frac{1}{2}} & - L \\end{bmatrix}) \\begin{bmatrix} \\Theta_A & 0\\\\ 0& I\\end{bmatrix}, \\] where $\\Gamma$ is the full Fock space. Similar results hold for constrained row contractions.", "revisions": [ { "version": "v1", "updated": "2016-04-17T10:25:56.000Z" } ], "analyses": { "subjects": [ "47A13", "47A15", "47A20", "47A68" ], "keywords": [ "characteristic function", "factorizations", "similar results hold", "full fock space", "row operator" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160404858H" } } }