arXiv Analytics

Sign in

arXiv:1604.02088 [math.CO]AbstractReferencesReviewsResources

Max k-cut and the smallest eigenvalue

V. Nikiforov

Published 2016-04-07Version 1

Let $G$ be a graph of order $n$ and size $m$, and let $\mathrm{mc}_{k}\left( G\right) $ be the maximum size of a $k$-cut of $G.$ It is shown that \[ \mathrm{mc}_{k}\left( G\right) \leq\frac{k-1}{k}\left( m-\frac{\mu_{\min }\left( G\right) n}{2}\right) , \] where $\mu_{\min}\left( G\right) $ is the smallest eigenvalue of the adjacency matrix of $G.$ An infinite class of graphs forcing equality in this bound is constructed.

Comments: 5 pages
Categories: math.CO
Subjects: 05C50
Related articles: Most relevant | Search more
arXiv:math/0410216 [math.CO] (Published 2004-10-08)
The smallest eigenvalue of K_p-free graphs
arXiv:1301.0374 [math.CO] (Published 2013-01-03, updated 2013-01-05)
The triangle-free graphs with rank 6
arXiv:1611.01818 [math.CO] (Published 2016-11-06)
A note on the positive semidefinitness of $A_α(G)$