arXiv:1604.02088 [math.CO]AbstractReferencesReviewsResources
Max k-cut and the smallest eigenvalue
Published 2016-04-07Version 1
Let $G$ be a graph of order $n$ and size $m$, and let $\mathrm{mc}_{k}\left( G\right) $ be the maximum size of a $k$-cut of $G.$ It is shown that \[ \mathrm{mc}_{k}\left( G\right) \leq\frac{k-1}{k}\left( m-\frac{\mu_{\min }\left( G\right) n}{2}\right) , \] where $\mu_{\min}\left( G\right) $ is the smallest eigenvalue of the adjacency matrix of $G.$ An infinite class of graphs forcing equality in this bound is constructed.
Related articles: Most relevant | Search more
arXiv:math/0410216 [math.CO] (Published 2004-10-08)
The smallest eigenvalue of K_p-free graphs
The triangle-free graphs with rank 6
arXiv:1611.01818 [math.CO] (Published 2016-11-06)
A note on the positive semidefinitness of $A_α(G)$