{ "id": "1604.02088", "version": "v1", "published": "2016-04-07T17:50:03.000Z", "updated": "2016-04-07T17:50:03.000Z", "title": "Max k-cut and the smallest eigenvalue", "authors": [ "V. Nikiforov" ], "comment": "5 pages", "categories": [ "math.CO" ], "abstract": "Let $G$ be a graph of order $n$ and size $m$, and let $\\mathrm{mc}_{k}\\left( G\\right) $ be the maximum size of a $k$-cut of $G.$ It is shown that \\[ \\mathrm{mc}_{k}\\left( G\\right) \\leq\\frac{k-1}{k}\\left( m-\\frac{\\mu_{\\min }\\left( G\\right) n}{2}\\right) , \\] where $\\mu_{\\min}\\left( G\\right) $ is the smallest eigenvalue of the adjacency matrix of $G.$ An infinite class of graphs forcing equality in this bound is constructed.", "revisions": [ { "version": "v1", "updated": "2016-04-07T17:50:03.000Z" } ], "analyses": { "subjects": [ "05C50" ], "keywords": [ "smallest eigenvalue", "max k-cut", "adjacency matrix", "infinite class" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160402088N" } } }