arXiv Analytics

Sign in

arXiv:1604.01857 [math.CA]AbstractReferencesReviewsResources

The Hermite-Hadamard inequality on hypercuboid

Mohammad W. Alomari

Published 2016-04-07Version 1

Given any ${\bf{a}}: = \left( {a_1 ,a_2 , \ldots ,a_n } \right)$ and ${\bf{b}}: = \left( {b_1 ,b_2 , \ldots ,b_n } \right)$ in $\mathbb{R}^n$. The $\textbf{n}$-fold convex function defined on $\left[ {{\bf{a}},{\bf{b}}} \right]$, ${\bf{a}},{\bf{b}} \in \mathbb{R}^n$ with ${\bf{a}}<{\bf{b}}$ is a convex function in each variable separately. In this work we prove an inequality of Hermite-Hadamard type for $\textbf{n}$-fold convex functions. Namely, we establish the inequality \begin{align*} f\left( {\frac{{{\bf{a}} + {\bf{b}}}}{2}} \right) \le \frac{1}{{{\bf{b}} - {\bf{a}}}}\int_{\bf{a}}^{\bf{b}} {f\left( {\bf{x}} \right)d{\bf{x}}} \le \frac{1}{{2^n }}\sum\limits_{\bf{c}} {f\left( {\bf{c}} \right)}, \end{align*} where $\sum\limits_{\bf{c}} {f\left( {\bf{c}} \right)} : = \sum\limits_{\mathop {c_i \in \left\{ {a_i ,b_i } \right\}}\limits_{1 \le i \le n} } {f\left( {c_1, c_2, \ldots ,c_n } \right)}$. Some other related result are given.

Comments: 12 pages
Categories: math.CA
Subjects: 26B25, 26B35, 52A20, 52A41, 26D07
Related articles: Most relevant | Search more
arXiv:1611.01905 [math.CA] (Published 2016-11-07)
Some refinements of Hermite-Hadamard inequality and an open problem
arXiv:1105.5043 [math.CA] (Published 2011-05-25, updated 2012-01-01)
Refinements of Hermite-Hadamard inequality on simplices
arXiv:1509.02569 [math.CA] (Published 2015-09-08)
Refinement of the right-hand side of Hermite-Hadamard inequality for simplices