{ "id": "1604.01857", "version": "v1", "published": "2016-04-07T03:08:36.000Z", "updated": "2016-04-07T03:08:36.000Z", "title": "The Hermite-Hadamard inequality on hypercuboid", "authors": [ "Mohammad W. Alomari" ], "comment": "12 pages", "categories": [ "math.CA" ], "abstract": "Given any ${\\bf{a}}: = \\left( {a_1 ,a_2 , \\ldots ,a_n } \\right)$ and ${\\bf{b}}: = \\left( {b_1 ,b_2 , \\ldots ,b_n } \\right)$ in $\\mathbb{R}^n$. The $\\textbf{n}$-fold convex function defined on $\\left[ {{\\bf{a}},{\\bf{b}}} \\right]$, ${\\bf{a}},{\\bf{b}} \\in \\mathbb{R}^n$ with ${\\bf{a}}<{\\bf{b}}$ is a convex function in each variable separately. In this work we prove an inequality of Hermite-Hadamard type for $\\textbf{n}$-fold convex functions. Namely, we establish the inequality \\begin{align*} f\\left( {\\frac{{{\\bf{a}} + {\\bf{b}}}}{2}} \\right) \\le \\frac{1}{{{\\bf{b}} - {\\bf{a}}}}\\int_{\\bf{a}}^{\\bf{b}} {f\\left( {\\bf{x}} \\right)d{\\bf{x}}} \\le \\frac{1}{{2^n }}\\sum\\limits_{\\bf{c}} {f\\left( {\\bf{c}} \\right)}, \\end{align*} where $\\sum\\limits_{\\bf{c}} {f\\left( {\\bf{c}} \\right)} : = \\sum\\limits_{\\mathop {c_i \\in \\left\\{ {a_i ,b_i } \\right\\}}\\limits_{1 \\le i \\le n} } {f\\left( {c_1, c_2, \\ldots ,c_n } \\right)}$. Some other related result are given.", "revisions": [ { "version": "v1", "updated": "2016-04-07T03:08:36.000Z" } ], "analyses": { "subjects": [ "26B25", "26B35", "52A20", "52A41", "26D07" ], "keywords": [ "hermite-hadamard inequality", "fold convex function", "hypercuboid" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160401857A" } } }