arXiv Analytics

Sign in

arXiv:1603.08975 [math.PR]AbstractReferencesReviewsResources

Convergence to the Stochastic Burgers Equation from a degenerate microscopic dynamics

Oriane Blondel, Patricia Gonçalves, Marielle Simon

Published 2016-03-29Version 1

In this paper we prove the convergence to the stochastic Burgers equation from one-dimensional interacting particle systems, whose dynamics allow the degeneracy of the jump rates. To this aim, we provide a new proof of the second order Boltzmann-Gibbs principle introduced in [Gon\c{c}alves, Jara 2014]. The main technical difficulty is that our models exhibit configurations that do not evolve under the dynamics - the blocked configurations - and are locally non-ergodic. Our proof does not impose any knowledge on the spectral gap for the microscopic models. Instead, it relies on the fact that, under the equilibrium measure, the probability to find a blocked configuration in a finite box is exponentially small in the size of the box. Then, a dynamical mechanism allows to exchange particles even when the jump rate for the direct exchange is zero.

Related articles: Most relevant | Search more
arXiv:math/0310210 [math.PR] (Published 2003-10-15, updated 2006-02-09)
The harmonic explorer and its convergence to SLE(4)
arXiv:1205.2682 [math.PR] (Published 2012-05-11, updated 2012-10-05)
Convergence in total variation on Wiener chaos
arXiv:1103.1426 [math.PR] (Published 2011-03-08, updated 2011-11-01)
Convergence of random series and the rate of convergence of the strong law of large numbers in game-theoretic probability