arXiv Analytics

Sign in

arXiv:1602.07158 [math.FA]AbstractReferencesReviewsResources

On the infimum of certain functionals

Biagio Ricceri

Published 2016-02-23Version 1

In this note, in particular, we establish the following result: Let $X$ be a real Banach space, $\varphi\in X^*\setminus \{0\}$ and $\psi:X\to {\bf R}$ a Lipschitzian functional with Lipschitz constant equal to $\varphi\|_X^{*}$. Then, we have $$\max\left\{\inf_{x\in X}(\varphi(x)+\psi(x)),\inf_{x\in X}(\varphi(x)-\psi(x))\right\}=\inf_{x\in X}(\varphi(x)+|\psi(x)|)$$ and $$\liminf_{\|x\|\to +\infty}(\varphi(x)+|\psi(x)|)=\inf_{x\in X}(\varphi(x)+|\psi(x)|)\ .$$

Related articles: Most relevant | Search more
arXiv:math/0409119 [math.FA] (Published 2004-09-08)
Invariant subspaces of $RL^1$
arXiv:0809.3644 [math.FA] (Published 2008-09-22)
The group of isometries of a Banach space and duality
arXiv:math/9212203 [math.FA] (Published 1992-12-04)
Operators preserving orthogonality are isometries