{ "id": "1602.07158", "version": "v1", "published": "2016-02-23T14:11:16.000Z", "updated": "2016-02-23T14:11:16.000Z", "title": "On the infimum of certain functionals", "authors": [ "Biagio Ricceri" ], "categories": [ "math.FA", "math.OC" ], "abstract": "In this note, in particular, we establish the following result: Let $X$ be a real Banach space, $\\varphi\\in X^*\\setminus \\{0\\}$ and $\\psi:X\\to {\\bf R}$ a Lipschitzian functional with Lipschitz constant equal to $\\varphi\\|_X^{*}$. Then, we have $$\\max\\left\\{\\inf_{x\\in X}(\\varphi(x)+\\psi(x)),\\inf_{x\\in X}(\\varphi(x)-\\psi(x))\\right\\}=\\inf_{x\\in X}(\\varphi(x)+|\\psi(x)|)$$ and $$\\liminf_{\\|x\\|\\to +\\infty}(\\varphi(x)+|\\psi(x)|)=\\inf_{x\\in X}(\\varphi(x)+|\\psi(x)|)\\ .$$", "revisions": [ { "version": "v1", "updated": "2016-02-23T14:11:16.000Z" } ], "analyses": { "keywords": [ "real banach space", "lipschitz constant equal", "lipschitzian functional" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }