arXiv:1601.04141 [math.LO]AbstractReferencesReviewsResources
Power set at $\aleph_ω$: On a theorem of Woodin
Published 2016-01-16Version 1
We give Woodin's original proof that if there exists a $(\kappa+2)-$strong cardinal $\kappa,$ then there is a generic extension of the universe in which $\kappa=\aleph_\omega,$ $GCH$ holds below $\aleph_\omega$ and $2^{\aleph_\omega}=\aleph_{\omega+2}.$
Categories: math.LO
Related articles: Most relevant | Search more
Computable structures in generic extensions
arXiv:math/0104195 [math.LO] (Published 2001-04-19)
Coding with ladders a well-ordering of the reals
arXiv:math/9201239 [math.LO] (Published 1989-04-15)
A note on canonical functions