{ "id": "1601.04141", "version": "v1", "published": "2016-01-16T09:21:42.000Z", "updated": "2016-01-16T09:21:42.000Z", "title": "Power set at $\\aleph_ω$: On a theorem of Woodin", "authors": [ "Mohammad Golshani" ], "categories": [ "math.LO" ], "abstract": "We give Woodin's original proof that if there exists a $(\\kappa+2)-$strong cardinal $\\kappa,$ then there is a generic extension of the universe in which $\\kappa=\\aleph_\\omega,$ $GCH$ holds below $\\aleph_\\omega$ and $2^{\\aleph_\\omega}=\\aleph_{\\omega+2}.$", "revisions": [ { "version": "v1", "updated": "2016-01-16T09:21:42.000Z" } ], "analyses": { "keywords": [ "power set", "woodins original proof", "strong cardinal", "generic extension" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160104141G" } } }