arXiv:1601.03589 [math.GT]AbstractReferencesReviewsResources
Polynomial Invariants of Torus Knots and (p,q)-Calculus
Published 2016-01-14Version 1
We introduce the deformed fermionic numbers, corresponding to the skein relations, the main characteristics of knots and links. These fermionic numbers allow one to restore the skein relations. For the Alexander (Jones) skein relation we introduce corresponding Alexander (Jones) fermionic q-numbers, and for the HOMFLY skein relation - the HOMFLY deformed (p,q)-numbers with one fermionic parameter.
Comments: 8 pages; based on invited talks given at the 6th Petrov International Symposium on High Energy Physics, Cosmology and Gravity, Kyiv (Ukraine), September 5-8, 2013
Journal: Algebras, Groups and Geometries Vol.31, No.2 (2014) 175-182
Keywords: torus knots, polynomial invariants, main characteristics, deformed fermionic numbers, fermionic q-numbers
Tags: journal article
Related articles: Most relevant | Search more
arXiv:1809.01779 [math.GT] (Published 2018-09-06)
On a Nonorientable Analogue of the Milnor Conjecture
arXiv:0807.4780 [math.GT] (Published 2008-07-30)
On the colored Jones polynomials of certain cable of the torus knots
A computation of the Kontsevich integral of torus knots