{ "id": "1601.03589", "version": "v1", "published": "2016-01-14T13:30:42.000Z", "updated": "2016-01-14T13:30:42.000Z", "title": "Polynomial Invariants of Torus Knots and (p,q)-Calculus", "authors": [ "Anatoliy M. Pavlyuk" ], "comment": "8 pages; based on invited talks given at the 6th Petrov International Symposium on High Energy Physics, Cosmology and Gravity, Kyiv (Ukraine), September 5-8, 2013", "journal": "Algebras, Groups and Geometries Vol.31, No.2 (2014) 175-182", "categories": [ "math.GT", "hep-th", "math-ph", "math.MP" ], "abstract": "We introduce the deformed fermionic numbers, corresponding to the skein relations, the main characteristics of knots and links. These fermionic numbers allow one to restore the skein relations. For the Alexander (Jones) skein relation we introduce corresponding Alexander (Jones) fermionic q-numbers, and for the HOMFLY skein relation - the HOMFLY deformed (p,q)-numbers with one fermionic parameter.", "revisions": [ { "version": "v1", "updated": "2016-01-14T13:30:42.000Z" } ], "analyses": { "subjects": [ "57M27", "17B37", "81R50" ], "keywords": [ "torus knots", "polynomial invariants", "main characteristics", "deformed fermionic numbers", "fermionic q-numbers" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160103589P", "inspire": 1415299 } } }