arXiv Analytics

Sign in

arXiv:1601.03543 [math.CO]AbstractReferencesReviewsResources

The second largest Erdős-Ko-Rado sets of generators of the hyperbolic quadrics $\mathcal{Q}^{+}(4n+1,q)$

Maarten De Boeck

Published 2016-01-14Version 1

An Erd\H{o}s-Ko-Rado set of generators of a hyperbolic quadric is a set of generators which are pairwise not disjoint. In this article we classify the second largest maximal Erd\H{o}s-Ko-Rado set of generators of the hyperbolic quadrics $\mathcal{Q}^{+}(4n+1,q)$, $q\geq3$.

Related articles: Most relevant | Search more
arXiv:1510.01697 [math.CO] (Published 2015-10-06)
Large $\{0, 1, \ldots, t\}$-Cliques in Dual Polar Graphs
arXiv:1601.00443 [math.CO] (Published 2016-01-04)
On the dual code of points and generators on the Hermitian variety $\mathcal{H}(2n+1,q^2)$
arXiv:2310.14739 [math.CO] (Published 2023-10-23)
Regular ovoids and Cameron-Liebler sets of generators in polar spaces