{ "id": "1601.03543", "version": "v1", "published": "2016-01-14T10:26:34.000Z", "updated": "2016-01-14T10:26:34.000Z", "title": "The second largest Erdős-Ko-Rado sets of generators of the hyperbolic quadrics $\\mathcal{Q}^{+}(4n+1,q)$", "authors": [ "Maarten De Boeck" ], "categories": [ "math.CO" ], "abstract": "An Erd\\H{o}s-Ko-Rado set of generators of a hyperbolic quadric is a set of generators which are pairwise not disjoint. In this article we classify the second largest maximal Erd\\H{o}s-Ko-Rado set of generators of the hyperbolic quadrics $\\mathcal{Q}^{+}(4n+1,q)$, $q\\geq3$.", "revisions": [ { "version": "v1", "updated": "2016-01-14T10:26:34.000Z" } ], "analyses": { "subjects": [ "51A50", "51E20", "05B25", "52C10" ], "keywords": [ "second largest erdős-ko-rado sets", "hyperbolic quadric", "generators", "second largest maximal" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160103543D" } } }