arXiv:1512.09035 [math.PR]AbstractReferencesReviewsResources
Long time behaviour of random walks on the integer lattice
Published 2015-12-30Version 1
We consider an irreducible finite range random walk on the $d$-dimensional integer lattice and study asymptotic behaviour of its transition function $p(n; x)$. In particular, for simple random walk our asymptotic formula is valid as long as $n (n - |x|_1)^{-2}$ tends to zero.
Categories: math.PR
Related articles: Most relevant | Search more
Plumes in kinetic transport: how the simple random walk can be too simple
arXiv:math/0006173 [math.PR] (Published 2000-06-22)
Favourite sites of simple random walk
arXiv:math/0403309 [math.PR] (Published 2004-03-18)
The Beurling estimate for a class of random walks