{ "id": "1512.09035", "version": "v1", "published": "2015-12-30T17:47:20.000Z", "updated": "2015-12-30T17:47:20.000Z", "title": "Long time behaviour of random walks on the integer lattice", "authors": [ "Bartosz Trojan" ], "categories": [ "math.PR" ], "abstract": "We consider an irreducible finite range random walk on the $d$-dimensional integer lattice and study asymptotic behaviour of its transition function $p(n; x)$. In particular, for simple random walk our asymptotic formula is valid as long as $n (n - |x|_1)^{-2}$ tends to zero.", "revisions": [ { "version": "v1", "updated": "2015-12-30T17:47:20.000Z" } ], "analyses": { "subjects": [ "60G50", "60F05", "60F99", "60B10" ], "keywords": [ "long time behaviour", "irreducible finite range random walk", "study asymptotic behaviour", "simple random walk", "dimensional integer lattice" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151209035T" } } }