arXiv:1512.03592 [math.GT]AbstractReferencesReviewsResources
An upper bound on stick numbers of knots
Published 2015-12-11Version 1
In 1991, Negami found an upper bound on the stick number $s(K)$ of a nontrivial knot $K$ in terms of the minimal crossing number $c(K)$ of the knot which is $s(K) \leq 2 c(K)$. In this paper we improve this upper bound to $s(K) \leq \frac{3}{2} (c(K)+1)$. Moreover if $K$ is a non-alternating prime knot, then $s(K) \leq \frac{3}{2} c(K)$.
Categories: math.GT
Tags: journal article
Related articles: Most relevant | Search more
arXiv:1411.1850 [math.GT] (Published 2014-11-07)
Stick numbers of $2$-bridge knots and links
arXiv:1803.02480 [math.GT] (Published 2018-03-06)
Width of the Whitehead double of a nontrivial knot
Estimates for the minimal crossing number