{ "id": "1512.03592", "version": "v1", "published": "2015-12-11T10:49:00.000Z", "updated": "2015-12-11T10:49:00.000Z", "title": "An upper bound on stick numbers of knots", "authors": [ "Youngsik Huh", "Seungsang Oh" ], "doi": "10.1142/S0218216511008966", "categories": [ "math.GT" ], "abstract": "In 1991, Negami found an upper bound on the stick number $s(K)$ of a nontrivial knot $K$ in terms of the minimal crossing number $c(K)$ of the knot which is $s(K) \\leq 2 c(K)$. In this paper we improve this upper bound to $s(K) \\leq \\frac{3}{2} (c(K)+1)$. Moreover if $K$ is a non-alternating prime knot, then $s(K) \\leq \\frac{3}{2} c(K)$.", "revisions": [ { "version": "v1", "updated": "2015-12-11T10:49:00.000Z" } ], "analyses": { "subjects": [ "57M25", "57M27" ], "keywords": [ "upper bound", "stick number", "minimal crossing number", "nontrivial knot" ], "tags": [ "journal article" ], "publication": { "publisher": "World Scientific" }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }