arXiv Analytics

Sign in

arXiv:1512.00569 [math.CA]AbstractReferencesReviewsResources

On The Boundedness of Bi-parameter Littlewood-Paley $g_λ^{*}$-function

Mingling Cao, Qingying Xue

Published 2015-12-02Version 1

Let $m,n\ge 1$ and $g_{\lambda_1,\lambda_2}^*$ be the bi-parameter Littlewood-Paley $g_{\lambda}^{*}$-function defined by $$ g_{\lambda_1,\lambda_2}^*(f)(x)= \bigg(\iint_{\R^{m+1}_{+}} \big(\frac{t_2}{t_2 + |x_2 - y_2|}\big)^{m \lambda_2} \iint_{\R^{n+1}_{+}} \big(\frac{t_1}{t_1 + |x_1 - y_1|}\big)^{n \lambda_1}|\theta_{t_1,t_2} f(y_1,y_2)|^2 \frac{dy_1 dt_1}{t_1^{n+1}} \frac{dy_2 dt_2}{t_2^{m+1}} \bigg)^{1/2}, \lambda_1>1,\quad \lambda_2>1 $$ where $\theta_{t_1,t_2} f$ is a non-convolution kernel defined on $\mathbb{R}^{m+n}$. In this paper, we showed that the bi-parameter Littlewood-Paley function $g_{\lambda_1,\lambda_2}^*$ was bounded from $L^2(\R^{n+m})$ to $L^2(\R^{n+m})$. This was done by means of probabilistic methods and by using a new averaging identity over good double Whitney regions.

Related articles: Most relevant | Search more
arXiv:1309.6512 [math.CA] (Published 2013-09-25)
Boundedness of Intrinsic Littlewood-Paley Functions on Musielak-Orlicz Morrey and Campanato Spaces
arXiv:math/0307109 [math.CA] (Published 2003-07-09)
On the Boundedness in $H^{1/4}$ of the Maximal Square Function Associated with the Schroedinger Equation
arXiv:1512.08681 [math.CA] (Published 2015-12-29)
On the Boundedness of Multilinear Fractional Strong Maximal Operator with multiple weights