{ "id": "1512.00569", "version": "v1", "published": "2015-12-02T04:01:11.000Z", "updated": "2015-12-02T04:01:11.000Z", "title": "On The Boundedness of Bi-parameter Littlewood-Paley $g_λ^{*}$-function", "authors": [ "Mingling Cao", "Qingying Xue" ], "comment": "21 pages", "categories": [ "math.CA", "math.AP" ], "abstract": "Let $m,n\\ge 1$ and $g_{\\lambda_1,\\lambda_2}^*$ be the bi-parameter Littlewood-Paley $g_{\\lambda}^{*}$-function defined by $$ g_{\\lambda_1,\\lambda_2}^*(f)(x)= \\bigg(\\iint_{\\R^{m+1}_{+}} \\big(\\frac{t_2}{t_2 + |x_2 - y_2|}\\big)^{m \\lambda_2} \\iint_{\\R^{n+1}_{+}} \\big(\\frac{t_1}{t_1 + |x_1 - y_1|}\\big)^{n \\lambda_1}|\\theta_{t_1,t_2} f(y_1,y_2)|^2 \\frac{dy_1 dt_1}{t_1^{n+1}} \\frac{dy_2 dt_2}{t_2^{m+1}} \\bigg)^{1/2}, \\lambda_1>1,\\quad \\lambda_2>1 $$ where $\\theta_{t_1,t_2} f$ is a non-convolution kernel defined on $\\mathbb{R}^{m+n}$. In this paper, we showed that the bi-parameter Littlewood-Paley function $g_{\\lambda_1,\\lambda_2}^*$ was bounded from $L^2(\\R^{n+m})$ to $L^2(\\R^{n+m})$. This was done by means of probabilistic methods and by using a new averaging identity over good double Whitney regions.", "revisions": [ { "version": "v1", "updated": "2015-12-02T04:01:11.000Z" } ], "analyses": { "subjects": [ "42B25", "47G10" ], "keywords": [ "boundedness", "bi-parameter littlewood-paley function", "non-convolution kernel", "probabilistic methods", "double whitney regions" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151200569C" } } }