arXiv Analytics

Sign in

arXiv:1511.09406 [math.AP]AbstractReferencesReviewsResources

Multiplicity results for the fractional laplacian in expanded domains

G. M. Figueiredo, M. T. O Pimenta, G. Siciliano

Published 2015-11-30Version 1

In this paper we establish the multiplicity of nontrivial weak solutions for the problem $(-\Delta)^{\alpha} u +u= h(u)$ in $\Omega_{\lambda}$,\ $u=0$ on $\partial\Omega_{\lambda}$, where $\Omega_{\lambda}=\lambda\Omega$, $\Omega$ is a smooth and bounded domain in $\mathbb{R}^N, N>2\alpha$, $\lambda$ is a positive parameter, $\alpha \in (0,1)$, $(-\Delta)^{\alpha}$ is the fractional Laplacian and the nonlinear term $h(u)$ has a subcritical growth. We use minimax methods, the Ljusternick-Schnirelmann and Morse theories to get multiplicity result depending on the topology of $\Omega$.

Related articles: Most relevant | Search more
arXiv:1403.3149 [math.AP] (Published 2014-03-13)
Existence, Uniqueness of Positive Solution to a Fractional Laplacians with Singular Nonlinearity
arXiv:1009.4042 [math.AP] (Published 2010-09-21, updated 2015-03-23)
Uniqueness and Nondegeneracy of Ground States for $(-Δ)^s Q + Q - Q^{α+1} = 0$ in $\mathbb{R}$
arXiv:math/0702392 [math.AP] (Published 2007-02-13)
Regularity estimates for the solution and the free boundary to the obstacle problem for the fractional Laplacian