{ "id": "1511.09406", "version": "v1", "published": "2015-11-30T17:45:06.000Z", "updated": "2015-11-30T17:45:06.000Z", "title": "Multiplicity results for the fractional laplacian in expanded domains", "authors": [ "G. M. Figueiredo", "M. T. O Pimenta", "G. Siciliano" ], "categories": [ "math.AP" ], "abstract": "In this paper we establish the multiplicity of nontrivial weak solutions for the problem $(-\\Delta)^{\\alpha} u +u= h(u)$ in $\\Omega_{\\lambda}$,\\ $u=0$ on $\\partial\\Omega_{\\lambda}$, where $\\Omega_{\\lambda}=\\lambda\\Omega$, $\\Omega$ is a smooth and bounded domain in $\\mathbb{R}^N, N>2\\alpha$, $\\lambda$ is a positive parameter, $\\alpha \\in (0,1)$, $(-\\Delta)^{\\alpha}$ is the fractional Laplacian and the nonlinear term $h(u)$ has a subcritical growth. We use minimax methods, the Ljusternick-Schnirelmann and Morse theories to get multiplicity result depending on the topology of $\\Omega$.", "revisions": [ { "version": "v1", "updated": "2015-11-30T17:45:06.000Z" } ], "analyses": { "keywords": [ "multiplicity result", "fractional laplacian", "expanded domains", "nontrivial weak solutions", "nonlinear term" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151109406F" } } }