arXiv Analytics

Sign in

arXiv:1511.08600 [math.AP]AbstractReferencesReviewsResources

Hyperboloidal evolution and global dynamics for the focusing cubic wave equation

Annegret Y. Burtscher, Roland Donninger

Published 2015-11-27Version 1

In the framework of a hyperboloidal initial value formulation for the cubic wave equation, we identify a codimension-1 Lipschitz manifold of data leading to solutions which converge to Lorentz boosts of the selfsimilar attractor $\sqrt{2}/t$. These global solutions thus exhibit a slow nondispersive decay, in contrast to small data evolutions.

Related articles: Most relevant | Search more
arXiv:0811.3966 [math.AP] (Published 2008-11-25, updated 2009-09-10)
Universality of global dynamics for the cubic wave equation
arXiv:1804.00078 [math.AP] (Published 2018-03-30, updated 2018-09-12)
On global dynamics of the Maxwell-Klein-Gordon equations
arXiv:1407.8199 [math.AP] (Published 2014-07-30, updated 2014-09-04)
Scattering for radial, semi-linear, super-critical wave equations with bounded critical norm